
EECS3311 Software Design (Fall 2020)

Q&A - Lecture Series W5

Monday, October 19

Expanded Class vs Deep Copying (1)

apty.ae#%fatfI=eebbE=ebe5yIeebbhIIb4- -0

-0. =
→
-

ebT=eb2⑦-
+

E - - -0

→ - -
-

: .
←

""

es.es

⇐⇒ -5
"

¥¥e*"E¥f
-77¥ #⇒

.

✓

↳ detaatinesionotis-eg.at . I
"

→ ⇒ and oh Intent
. =

Jia"ssAfE¥ A oa=neA④TE
. HIT F"

g"df%[default
↳ constructor

} f-
"alan"

.

Expanded Class vs Deep Copying (2)0
- .

0 .

0

I
[I

⇒¥÷r÷¥¥s¥s
-1€eblneb-feb.EE?ebUtrdefauHva5#.

.

.
.

"

I *.*⇒"dan

Expanded Class vs Deep Copying (3)
I

-0
.

'

¥Eo%¥¥as
①eb"

.Ikki -

class Too expanded class BAR
- 0¥ default- create
create
- make default

-create

make
doffed

de aid

⑤ STRING adf.se/RTJ
end

→ bH←
.]

'

is a default -6

Void

Once Routine (2)

° ⑦ I ±n
.

%

Iii:c.an2

¥¥e

I

beat vbdi
bda : BANK DATA- ACCESS

dgdatalsdai-a.IS#-'
data

routine
.

d±E ÷ bdI.DE#The
same onewn

(2nd xD

The “s.make(7)” in CLIENT_1 doesn’t compile
because it’s not able to use command `make`.

But how would it be able to use constructor
`make` in the first place?

Doesn’t only CLIENT_2 have access to the
implementation of `make`?

Would the descendants of CLIENT_2 be able
to make use of SUPPLIER’s make command
through inheritance?

Would the descendants of CLIENT_1 be able
to make use of SUPPLIER’s make constructor
through inheritance?

In class CLIENT_2, old_s cannot be instantiated
by using the constructor `make`.

If it did not get instantiated, wouldn’t there be
no pointer pointing to the object?

How can its init_i be modified via feature `make`?

It's
smote

stage I

⑦ Qualified calls status) are

checked before wid safety .

Export Status Case 2

class SUPPLIER

create
 make

feature
 make (init_i: INTEGER)
 do
 i := init_i
 end

feature
 i: INTEGER
end

class CLIENT_1
 ...
 test: BOOLEAN
 local
 s, old_s: SUPPLIER
 do
 create s.make (5)
 old_s := s
 create s.make (5)
 print (old_s = s)
 old_s := s
 s.make (7)
 print (old_s = s)
 end
end

class CLIENT_2
 ...
 test: BOOLEAN
 local
 s, old_s: SUPPLIER
 do
 create s.make (5)
 old_s := s
 create s.make (5)
 print (old_s = s)
 old_s := s
 s.make (7)
 print (old_s = s)
 end
end

0€ -

•
→ usedaafonsaucar.

→ ✓ €3
→h*%d
-

IT÷¥÷÷÷÷÷:÷÷÷:÷i:÷:÷÷.
n
.

- * for using
'

a;¥Inx %m%d .
amplified this.

D Using a command with a
^ context object

find e.gs .
make

② Using a command to create

an object
e.g.hr#S-makelz,

Lab2= t
¥ LINEAR.az#%edIIf descendants

.

feature fET¥fj→d%s↳rttR#
k¥1 : -

m¥ldbB)

-

end
LD1
=

When we are creating a once routine in a class,
after the first call is made to this routine by any instance of this class,
that result is cached to all instances of this class?

Since DATA_ACCESS is an expanded class,
both `access` objects in these clients would be different
instances of DATA_ACCESS.

Assuming CLIENT_1 executes first then CLIENT_2,
does CLIENT_2 get a reference to the DATA object made by
CLIENT_1?

What would have been the case if DATA_ACCESS was not
expanded (and assuming `access` was properly initialized in
each client as a separate object)?

aITsof-I-taesss.da.la

f¥
#

!= d

We can avoid initializing the object as expanded classes do it by default.
However, I was wondering in a class where we can have multiple
constructors (some classes have make_empty and make_from_tuple) ,
how will expanded classes work in that case or are they allowed to
have multiple constructors? i

