
EECS3311 Software Design (Fall 2020)

Q&A - Lecture Series W5

Monday, October 19



Expanded Class vs Deep Copying (1)
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Expanded Class vs Deep Copying (2)0
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Expanded Class vs Deep Copying (3)
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Once Routine (2)
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The “s.make(7)” in CLIENT_1 doesn’t compile 
because it’s not able to use command `make`. 

But how would it be able to use constructor 
`make` in the first place? 

Doesn’t only CLIENT_2 have access to the 
implementation of `make`?



Would the descendants of CLIENT_2 be able 
to make use of SUPPLIER’s make command 
through inheritance?

Would the descendants of CLIENT_1 be able 
to make use of SUPPLIER’s make constructor 
through inheritance?



In class CLIENT_2, old_s cannot be instantiated 
by using the constructor `make`. 

If it did not get instantiated, wouldn’t there be 
no pointer pointing to the object? 

How can its init_i be modified via feature `make`?
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Export Status Case 2

class SUPPLIER

create 
      make

feature 
   make (init_i: INTEGER)
      do
         i := init_i
      end

feature
   i: INTEGER
end

class CLIENT_1
   ...
   test: BOOLEAN
      local
         s, old_s: SUPPLIER
      do
         create s.make (5)
         old_s := s
         create s.make (5)
         print (old_s = s)
         old_s := s
         s.make (7)
         print (old_s = s)
      end
end

class CLIENT_2
   ...
   test: BOOLEAN
      local
         s, old_s: SUPPLIER
      do
         create s.make (5)
         old_s := s
         create s.make (5)
         print (old_s = s)
         old_s := s
         s.make (7)
         print (old_s = s)
      end
end
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D Using a command with a
^ context object

find e.gs .
make

② Using a command to create

an object
e.g.hr#S-makelz,
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When we are creating a once routine in a class, 
after the first call is made to this routine by any instance of this class, 
that result is cached to all instances of this class?

Since DATA_ACCESS is an expanded class, 
both `access` objects in these clients would be different 
instances of DATA_ACCESS. 

Assuming CLIENT_1 executes first then CLIENT_2, 
does CLIENT_2 get a reference to the DATA object made by 
CLIENT_1?

What would have been the case if DATA_ACCESS was not 
expanded (and assuming `access` was properly initialized in 
each client as a separate object)?
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We can avoid initializing the object as expanded classes do it by default. 
However, I was wondering in a class where we can have multiple 
constructors (some classes have make_empty and make_from_tuple) , 
how will expanded classes work in that case or are they allowed to 
have multiple constructors? i


